首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   10篇
  国内免费   7篇
电工技术   3篇
综合类   4篇
化学工业   101篇
金属工艺   50篇
机械仪表   2篇
建筑科学   4篇
能源动力   104篇
轻工业   1篇
石油天然气   1篇
无线电   5篇
一般工业技术   33篇
冶金工业   3篇
原子能技术   3篇
自动化技术   9篇
  2023年   7篇
  2022年   4篇
  2021年   4篇
  2020年   19篇
  2019年   26篇
  2018年   4篇
  2017年   14篇
  2016年   11篇
  2015年   14篇
  2014年   24篇
  2013年   21篇
  2012年   6篇
  2011年   18篇
  2010年   18篇
  2009年   13篇
  2008年   12篇
  2007年   15篇
  2006年   29篇
  2005年   10篇
  2004年   18篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有323条查询结果,搜索用时 218 毫秒
1.
2.
The chemical or electrochemical oxidation of phenylenediamines in acidic aqueous media yields the corresponding oligomers or polymers. Their structures and properties are discussed in relation to a closely-related conducting polymer, polyaniline. Depending on the reaction conditions, polyphenylenediamines are produced as powders, colloidal dispersions, thin films, or composites. In contrast to polyaniline, polyphenylenediamines are rated as non-conductors and their conductivities are low. Similarly to polyaniline, these polymers display a salt–base transition and they are redox-active. They act as reductants of noble-metal compounds to the corresponding metals or as precursors in the carbonization to nitrogen-rich carbons. Applications proposed in the literature are outlined; they include the corrosion protection of metals, catalysis, electrorheology, sensors, energy-conversion devices, electrochromism, noble-metal recovery, and water treatment.  相似文献   
3.
4-(2-Furyl) benzenamine (FBA), was successfully synthesized by a simple method including substitution of furan on p-nitroaniline followed by reduction of nitro group. Structure of the synthesized monomer was verified using IR, 1H NMR and GC–MS techniques. Corresponding poly(4-(2-furyl) benzenamine) (PFBA) was electrochemically synthesized in acidic aqueous and organic solutions by cyclic potential sweep method. Characterization of the resulting polymer was performed by cyclic voltammetry (CV), IR, UV–vis spectroscopy, and scanning electron microscopy (SEM). Effect of solvent on the electroactivity of the polymer modified electrode was investigated. The HOMO, LUMO levels and band gap energies of the doped and undoped form of the PFBA were calculated using UV–vis and CV data. The electrochromic properties and corrosion behavior of PFBA were studied. The electrochromic properties of the copolymer film, electrochemically coated on transparent conductive oxide, corroborate multi-color electrochromic behavior of the polymer whenever the applied potential was switched from reducing (yellow) to oxidizing status (green). The FBA polymer was found to exhibit enhanced corrosion protection effect on steel electrode in comparison with corresponding polyaniline (PANI) and polyfuran (PFu) homopolymers based on series of electrochemical measurements in 3.5 wt% NaCl electrolyte solutions.  相似文献   
4.
Polyaniline (PANI) was synthesized by chemical oxidative polymerization of aniline dissolved in aqueous phosphoric acid. The polymer was characterized by UV–Visible spectroscopy (UV–Vis), thermal gravimetric analysis (TGA) and Fourier transform infrared spectroscopic (FTIR) techniques. Hardener free epoxy coating was formulated with 10% PANI. The curing process of epoxy resin by PANI was analyzed using FTIR and a suitable mechanism of curing was suggested. The corrosion protective performance of conventional polyamide cured epoxy and PANI cured epoxy coating on steel has been assessed in 3% NaCl by electrochemical impedance spectroscopy (EIS). The self-healing property of the PANI cured epoxy coating on steel in 3% NaCl was studied by scanning vibrating electrode technique (SVET).  相似文献   
5.
Fundamental studies focusing on the electrode kinetics are essential in understanding the fuel cell operation and optimizing the electrode designs. In this study, we determined the triple-phase boundary (TPB)-based kinetics of hydrogen electrochemical oxidation using nickel patterned electrode experimental data and the Butler-Volmer formalism of the oxidation process. The same kinetics are then incorporated in a cermet electrode electrochemical model to estimate the effective TPB density of the nickel/yittrium-stabilized zirconia cermet anode. The kinetics are found to be of the same order of magnitude as previously determined by the microstructure reconstruction of cermet anode. Simulation results further revealed that the effective TPB density is several orders of magnitude lower than the typically reported physical densities of the cermet anode that possibly suggests that only a minor fraction of the physical TPB is actually required or available to produce the cell current at given cell voltage. The effect of various operating conditions on the anode activation overpotential is also investigated and discussed in this study.  相似文献   
6.
Nowadays, the properties of polymeric coatings are enhanced by various additives mixed into the resin. Recently, embedding of polymeric microcapsules into the coating matrix has been investigated to provide special on-demand features to the coating. The detection and characterization of such microcapsules in a polymeric coating are of major importance but difficult, because both are built up by similar molecules with similar densities. Current analysis methods require complex sample preparation to allow reliable measurements.In contrast, confocal Raman spectroscopy allows fast and non-destructive differentiation between characteristic molecular bonds at a spatial resolution below one micrometer. Hence, the objective of this research was to apply this technique on microcapsules embedded in a coating and provide answers to the following questions: Can one detect microcapsules embedded in a coating and clearly identify them? Can one differentiate between full and empty microcapsules and the coating matrix? Can one determine the exact location of the capsules and their distribution in the coating?Therefore, several two-dimensional confocal Raman spectroscopy mappings recorded at different depths allowed a three-dimensional reconstruction of the polymeric coating with the polymeric microcapsules in it. Thereby, the distribution of the capsules within the coating could be determined with micrometer resolution. As a result Raman tomography provides a more detailed insight into the distribution of microcapsules through the possibility of three-dimensional reconstruction.  相似文献   
7.
8.
PEM-based electrolytic air dehumidification is innovative due to its high efficiency, compact size and cleanness. However, high polarization loss and severe performance degradation have been observed, especially at high applied voltages (>2.5 V). Understanding the V–I characteristics is critical to performance optimization. This study experimentally investigated the V–I characteristics and internal response of materials under various operating conditions, with in-situ Electrochemical Impedance Spectroscopy (EIS) methods. Real-time mass transfer, electrochemical polarization and reaction dynamics of PEM components during dehumidification were derived by EIS. Then, a fast prediction model was built to directly predict the dehumidification rate and attenuation without any iteration, suitable for online monitoring and adjustment. Compared to other models, this model can take a quick understanding of the impact of operating conditions on the material characteristics inside the PEM element. The deviations of current density, PEM proton conductivity and moisture removal were 3%, 11.2% and 15.3%, respectively, compared to experiment data. Results showed that when the applied voltage changed from 1.5 to 3.5 V, the high-frequency resistance of the PEM element increased from 1.69 to 2.69 Ω, and the PEM proton conductivity decreased by about 38 times. The sharp drop in PEM proton conductivity resulted in a current attenuation. With this model, requirements for key components of PEM dehumidification were also obtained. Analysis of the overpotential distribution showed that increasing the water retention and reducing the dependence of proton conductivity on water molecules of the PEM can effectively improve the performance. This research provides guidance for the performance optimization and material selection of PEM-based dehumidification.  相似文献   
9.
The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ $0.10 kW?1 h?1. There is also a low‐level utility scale acceptance of energy storage solutions and a general lack of battery‐specific policy‐led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas‐ and diesel‐fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
《Ceramics International》2017,43(12):9145-9152
The decomposition of succinate type precursors obtained by a modified sol-gel method using cobalt and iron nitrates, 1,4-butanediol and tetraethylorthosilicate, followed by the formation of single phase cobalt ferrite embedded in the silica matrix by annealing at 400–1100 °C was studied. The thermal analysis indicated the formation temperature of succinate type precursors, while the Fourier transform infrared spectroscopy (FT-IR) data confirmed the formation of the precursors in the pores of silica matrix. The formation of CoFe2O4 was investigated by X-ray diffraction and FT-IR, the size and shape of the nanoparticles by transmission electron microscopy, while the resulted microstructures by scanning electron microscopy. The crystallinity and crystallites size increased with the annealing temperature. The hysteresis loops revealed a direct relationship between annealing temperature and saturation magnetization in constant coercive field. The particle size of ferrite powders is critically dependent on the annealing temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号